Scientists are anticipated to unveil, the first-ever photograph of a black hole

Scientists are anticipated to unveil, the first-ever photograph of a black hole
share on

Scientists are anticipated to unveil on Wednesday the first-ever photograph of a black hole, a wonderful breakthrough in astrophysics offering insight into celestial monsters with gravitational fields so intense no matter or light can escape.

The US National Science Foundation has scheduled a news conference in Washington to announce a “groundbreaking result from the Event Horizon Telescope (EHT) project,” an international collaboration formed in 2012 to try to instantly analyze the immediate environment of a black hole.

Simultaneous news conferences are scheduled in Brussels, Santiago, Shanghai, Taipei and Tokyo.

A black hole’s event horizon, one of the most violent places in the universe, is the point of no return beyond which anything – stars, planets, gas, dust, all kinds of electromagnetic radiation including light – gets sucked in irretrievably.

When scientists involved with the research declined to disclose the findings ahead of the formal announcement, they are surely very clear regarding their goals.

“It’s a visionary project to take the first photograph of a black hole. We are now a partnership of over 200 people globally,” astrophysicist Sheperd Doeleman, director of the Event Horizon Telescope at the Center for Astrophysics, Harvard & Smithsonian, said at a March event in Texas.

The news conference is scheduled for 9 a.m. (1300 GMT) on Wednesday.

The research is going to put to the test a scientific pillar – physicist Albert Einstein’s theory of general relativity, based on University of Arizona astrophysicist Dimitrios Psaltis, project scientist for the Event Horizon Telescope. That theory, put forward in 1915, was intended to explain the laws of gravity and their relation to other natural forces.

The scientists focused two supermassive black holes.

The first – called Sagittarius A* – is located at the center of our own Milky Way galaxy, possessing 4 million times the mass of our sun and located 26 ,000 light years from Earth. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

The second – called M87 – resides at the center of the neighboring Virgo A galaxy, boasting a mass 3.5 billion times that of the sun and located 54 million light-years away from Earth. Streaming away from M87 at nearly the speed of light is a humongous jet of subatomic particles.

Black holes, coming in a number of sizes, are extraordinarily dense entities formed when very massive stars collapse at the conclusion of their life cycle. Supermassive black holes are the biggest kind, devouring matter and then radiation and perhaps merging with other black holes.

Psaltis explained a black hole as “an extreme warp in spacetime,” a term referring to the three dimensions of space and the one dimension of time joined into a single four-dimensional continuum.

Doeleman stated the project’s researchers got the first data in April 2017 from a global network of telescopes . The telescopes that collected that first data are situated in the U .S . states of Arizona and then Hawaii as well as Mexico , Chile , Spain and Antarctica . Since then , telescopes in France and Greenland have been added to the network .

The researchers also are going to be making an attempt to detect for the very first time the dynamics near the black hole as matter orbits at near light speeds before being swallowed into oblivion.

The fact that black holes do not allow light to escape makes viewing them difficult. The scientists are going to be searching for a ring of light – radiation and matter circling at tremendous speed at the edge of the event horizon – around a region of darkness representing the actual black hole. This is known as the black hole’s shadow or silhouette.

Einstein’s theory, if correct, should allow for an extremely accurate prediction of the size and shape of a black hole.

“The shape of the shadow will be almost an ideal circle in Einstein’s theory,” Psaltis claimed. “If we discover it to be different than what the theory predicts, then we go back to square one and we say, ‘Clearly, something is not exactly right.’”


Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *